Sunday, March 24, 2019

Cross Correlation AutoCorrelation 2D Pattern Identification

Cross Correlation


metodi sviluppati nel trattamento dei dati dei microtremori ....

Dal sito si legge:
Correlazione incrociata è un metodo standard per stimare il grado in cui sono correlati due serie. Consideriamo due serie x (i) e y (i) dove i = 0,1,2 ... N-1. La cross correlazione r al ritardo d è definito come

Dove mx e il mio sono i mezzi della serie corrispondente. Se quanto sopra è calcolato per tutti i ritardi d = 0,1,2, ... N-1 poi si traduce in una serie di correlazione incrociata pari al doppio della lunghezza della serie originale.

Sunday, March 17, 2019

PROGETTO SISMOGRAFO 12 CANALI 24 bit - gain 128

PROGETTO
SISMOGRAFO 12 CANALI  (espandibile)
24 bit - gain 1 2 4 8 16 32 64 128 x , pilotabile da software

per prove Masw, Remi, sismica a rifrazione, riflessione,  prove in foro - low - low cost

foto di Sette prototipo 16 bit


Dopo una pausa  di molti mesi è stata ripresa la progettazione e la realizzazione del software di acquisizione sel sismogrado 12 canali espandibile in futiro a 24 e più canali.

Il progetto ha subito delle modifiche in quanto si è abbandonato l'uso dell'adc 16 bit con amplificatori con gain  elevato fisso per passare al l'adc 24 bit, prossimamrnte ci saranno ancora modifiche sull'hardware di acquisizione.


Una delle prime acquisizioni del sismtema 12 canali 24 bit gain 1 x , stesa sismica 70 metri, battuta con mazza da 6 kg su affioramento granitico alterato 

Questa è solo una fase intermedia in quanto l'hardware in futuro subirà ancora dei miglioramenti e potenzialmenti.

La possibilità di sfruttare l'Adc 24 bit permette di ottenere uno strumento con maggiore dinamica rispetto alla precedente versione a 16 bit, il gain aggiuntivo permetterà di aumentare ulteriormente  la sensibilità di 128 unità se ci riferiamo ad un normale adc con gain 1 x massio 2 4 8 x utilizzato dalla maggior parte degli strumenti in commercio, a parte qualcuno di recente realizzazione che ha seguito le orme di Theremino con gain leggermente inferiore a 64 x invexe dei 128 x usato dal nostro prototipo.





Si è pensato inizialmente la messa apunto hardware e software  la sezione per eseguire  le indagini MASW e/o similari in quanto  tutte le opzioni hardware sono già implementate nel progetto, tra queste il trigger che per il momento sfrutta il primo o l'utimo geofono come fonte di start ( oppure un geofono aggiuntivo), prossimamente verrà sostituito con un trigger piezzoelettrico molto più preciso e rapido nella risposta.

Per il MASW il trigger  ha solo la funzione di avviare l'acquisizione, non ha finalità di determinare il tempo di percorrenza tra il punto di battuta e i rispettivi geofoni  come invece avviene nella sismica r arifrazione.



I geofoni  utilizzati sono a 24 bit 28,8 vol/m/sec , anche se si potrebbero usare geofoni più sensibili , non consigliati in quanto grazie al gain utilizzato il segnale potrebbe adare in saturazione con geofoni ad elevata sensibilità.  

In tal caso sarebbe necessario  diminuire di 8 volte la sensibilita strumentale da 128 a soli 8 - 16 x, per compnsare la maggior sensibilità srumentale,  soluzione inutile e costosa in quanto acquistare geofoni più sensibili, costosi, difficili da gestire fragili comporterebbe una riduzione della sensibilità strumentale.



Rispetto al precedente progetto sono anche cambiati i settaggi di hal e la modalità di acquisizione passando da un sistema "single" + 12 amplificato autocostruiti ad un sistema "pseudo differenziale", in futuro sarà preso in considerazione in alternativa anche il sistema "differenziale" con prestazioni leggermente  migliori, per sistemi a 12  - 16 - 24 canali. o più...


Il cavo per il differenziale che pseudo differenziale è costituito da un numero di poli doppio dei canali attivabili + una calza interna, se avanzano dei cavi, questi si possono usare come cavi di prolunga.

Nel caso di sistema a 12 - 16 canali consiglio realizzare due cavi da 6 - 8 canali in modo che la strumentazione sia posizionata al centro dei due cavi per dimezzare la distamza tra i geofoni più esterni all'adconverte, minore è tale distanza minore sono i rumori elettromagnetici che possono entrare del sistema, anche se si sono prese tutte le cautele del caso per schermare il sistema di acquisizione.

Man mano andranno avanti i lavori questa pagina web verrà aggiornata, per chi desidera partecipare al progetto è possibile dare la propria disponibilità che sarà riservata, al massimo, ad un massimo di 5 persone.


 ---------------------------------------


Minime sono le differenze hardwarw tra la versione masw, remi, sismica a rifrazione, sismica a rifelssione prove in foro., ( le principali differenze  sono prevalentemente software di aceuisizione e gestione file , ppre la rifrazione e rigelssione sarà utile sostituire  il master con un nuovo hardware + veloce in fase di realizzazione.

PRE REALIZZARE IL SISMOGRAFO PROVE MASW :

frequenza di campionamento 500 hz


durata acauisizione 0,5 , 1 2 4 secondi

gain condigliato 1-32 a seconda lella lunghezza dello stendimento e della tipologia del suolo che si vuole indagare.


Numero di canali 12 espandinili in futuro  a 16-24 canali da 4,5 volt 28,8 v/m/s  di sensibilità - meglio du caci a 6 geofoni .


Trigger piezoelettrico o mevvanico
Pretrigger 1 -100 msec modificabile

Geofoni 12 .0


Cavo/i interasse 3 - 6 metri in funzione della lunghezza della stesa massima che si desidera ottenere ( relativamente semplice da realizzare , in futuro verrà eliminato)
cavo di battuta esterna

Avvolgitori medio piccoli,


Mazza da 6 - 8 -12 15 kg
a seconda delle esigenze





Piastra in ferro e il lega da alluminio  di diametro pari a 25 cm , spessore 3 cm circa.

in alternativa una flangia piatta  cieca del diametro di 25 cm , spessore 2-3 cm


Baule per il trasporto

NO batterie




come configurare Hal


dal manualr adc 24 bir THEREMINO - PDF

In questa prima fase del progetto di consigòia di collegare il cavo /cavi a 12 - 6 canali x2 in modalità " pseudo differenziale , si possono connettere fino a 15 geofoni ( consigliati 12) secondo lo schema sopra allegato, si consiglia di leggere il manuale online di theremino 24 bit., attenzione occorre anche posizionare il ponticloo secondo lo schema.

Il cavo si consiglia di realizzarlo in due spezzoni da 6 canali , nel centro verrà posizionato lo strumento.

I due cavi dovranno essere costituiti da 2 matasse a 12 pin più calza , di buoma qualità ( costo meno di 2 euro/metro, servono anche 12 connettori a valve per collegare le pinzette dei geofoni.

L'operazione di montaggio ache se subito potrà apparire conplessa una persona con una minima esperienza nel saldare potrà realizzarla velocemente.

Per ogni connettore occorre seconso un ordine crescente saldare il polo 1 e 2 alle due valve , i n° pari alla valva più larga del connettor, i numeri dispari a quella più stretta per il canale 1 A e 1B, ripetere le meesime operazioni per pi canale 2A 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B.

Ripetere le stesse operazioni per il cavo 2 , i que cavi dovranno essere uguali.

Alle estremità interne del cavo i singoli pin dei cavi dovranno essere salfati ad un connettore fipo LPT1 facili da trovare in commercio e facili da saldare.

Su un lato della scatola che conterrà l'Hardware dovranno essere fissate altri 2 connettori da pannello LPT1 , da collegare con cavetti tuistati dupoin al modulo 24 bit Teremino, la calza proveniente dai 2 cavi dovra essere collegata al pin 1 del filare adc 24 bit più esterno.

I dupoint secondo l'ordine prestabilito saranno collegati ai pin del filare centrale ed interno dell'adc come in fihura precedentemente allegata . stessa cosa per i dupoint ptovenienti sal secondo cavo proveniente dal cavo N° 2.


Da una tesi progetto sismografo theremino, in questo caso esiste solo un connettore in quanto si è utilizzato il cavo di uno strmento professionale a 12 canali

La scatola che contiene l'ardware deve essere sufficientemente grande per contenere i cavi, nella foto si vede che xhe 24 bit è collegato il master che ha la funzione di trasmettere i dati acquisiti al PC o tablet windows.

Notare la semplicità e facilità di assemblaggio del sistema e il cavo usb che collega il master con il pc.

Il sistema viene alimentato dal PC, per cui basta pesanti batterie da 12 /25 vol da auto per alimentare la strumentazione !!!!!.

Sunday, March 10, 2019

Curve di livello con SketchUp


Curve di livello con SketchUp




nel sito si legge:

lavorare con le curve di livello è una delle cose che più detesto in assoluto.

Personalmente, ricavare da un file CAD inviato da terze parti delle curve di livello perlomeno utilizzabili, o ancora meglio trovarle già sistemate e pronte all’uso, per me è diventato un miraggio.

Layer multipli, altezze completamente messe a caso e chi più ne ha, più ne metta! Pensa che Clara, una delle lettrici del blog, mi parlava su Facebook di un file CAD che aveva ricevuto in cui le curve di livello erano addirittura state tagliate in alcuni punti per far posto all’edificato. Ah, i livelli, questi sconoscuti!

Spesso e volentieri, la soluzione migliore è proprio quella di armarsi di santa pazienza e disegnare le curve di livello da zero.

Per fortuna, Google ci viene in soccorso ancora una volta: lo sapevi che Google Earth integra anche i dati topografici del terreno? Beh, ovvio che lo sapevi!

continua sul sito http://ctrl-z.it

Saturday, March 2, 2019

tromografo - sismografo per sismologia

ultimi prototipi realizzati

tromografo sperimentale 

sismografo per sismologia

di Roberto Genovese
( stazione sismica di Barcellona Pozzo di Gotto ME)


Ottimo lavoro rispecchia i risultati della sperimentazione fatta fino ad Oggi dal nostro progetto:

1) baricentro basso frazie alla piastra basale pesante ( per aimentare la stabilità

2) spike's distanti tra loro per aumentare la stabilità del sistema

3) relativamente piccolo e basso per avere il minimo impatto con il vento

4) rapporto larchezza / altezza elevato per faranrire la massima stabilita

5) messa in bolla semplice e veloce con lle tre manopole

6) assenza di cavi di comunicazione che escono verticalmente del coperchio per tornare in sul terreno causa di vivrazioni random che alterano i dati acquisiti

7) bello e semplice da vedere

8) Aspetto dolido e rigido costituito da materiale pressofuso di spessore

9) anche se non è visibile internamente , il cablaggio è sicuramente curato ( conoscendo la precisione certosina di chi lo ha realizzato

10) la scatola offre una ottima protezione all'inquinamento elettro magnetico

le caratteristiche sono tali da poter essere utilizzato come tromografo - sismografo per sismologia.



Necessita come per tutti i progetti nuovi di una serie di test per verificare la risposta strumentale anche in sito come strumento trompgrafo sperimentale, in quanto deve superare standar superiori rispetto a quelli

richiesti da un normale sismografo per sismologia in quanto il calpo di acquisizione per i microtremori è 1000 1000.000 di volte ipiù sensibile a quello usato da una stazione sismica tradizionale per misurare l'ampiezza dei terremoti.

Per ridurre il rumore ambientale è stato aumentato il valore de condensatori da 4uF a 10 uF


in quanto i 4 uF vanno bene se si acquisisce a 500 hz, per il tromografo, visto che le frequenze del tronografo che interessano vanno da 0 a 100 hz il condensatore può arrivare a 10 Uf

Nel caso della sismologia le frequenze che interessano sono di 50 hz ( anzi banda passante 0,1 10 hz si possono aumentare i condensatori anche a 20, 30 40 50 uF e + ( servono condensatori ceramici non polarizzati da 10 uf


VISUALIZZARE IL VIDEO DEMO DEL TROMOGRAFO - sondaggi HVR metodo Nakamura _ frequenza di risonanza del terreno, frequenza di risonanza del fabbricato , zonazione sismica.



Caratteristiche del Theremino Adc24

per utilizzo in differenziae
misure microtremori e Sismologia
Per chi vuoe realizzare l'hardware è possibile scaricare gratuitamente i progetti hardware il firware per programmare il Pic, i listati dei software di acquisizione comprese le sorgenti
Il progett0 è open source e open hardware scaricabile gratuitamente dal sito di Theremino,com

dal sito di www,theremino.com  si legge:

Il Theremino Adc24 è basato sul convertitore AD7124-8 di Analog Devices. 


Si tratta di un convertitore Sigma Delta ad altissime prestazioni, progettato nel 2015, al culmine di decenni di esperienza di Analog Devices in questo campo. Oltre al basso rumore e alla grande flessibilità questo Adc consuma pochissimo, circa 900 micro Ampere. 

La velocità di campionamento è selezionabile in un campo molto vasto (da 10 fino a 19200
campioni al secondo) e sono disponibili 8 livelli di filtraggio, per scegliere il migliore compromesso tra velocità di risposta e riduzione del rumore. Le varie configurazioni di ingresso (Differenziale, Pseudo o Single Ended), permettono di collegare sensori di ogni tipo

Connettività e modularità - L'Adc24 è un modulo compatibile con il sistema Theremino, che è
intrinsecamente modulare e componibile. 
Questo permette di rivalutare le apparecchiature nel tempo e modificarle a piacere, aggiungendo nuovi moduli e nuove funzioni. Software, firmware, schemi e progetti sono completamente gratuiti e Open Source.

Applicazioni - Il Theremino Adc24 è finalizzato alla rilevazione e registrazione di segnali a bassa e media frequenza. La sua flessibilità e il suo rapporto segnale/rumore sono superiori a ogni altro strumento simile. 
Per cui è lo strumento ideale per la registrazione di microtremori (HVSR) e terremoti, ma anche di segnali provenienti da altri trasduttori come: potenziometri lineari per la rilevazione di spostamenti e fratture, celle di carico, bilance analitiche, misuratori di pressione, sensori di flessione, fotodiodi per illuminazioni debolissime, magnetometri, microbarometri, analizzatori di spettro a fenditura, termocoppie, misuratori di pH, datalogger, ecc...

Sincronizzazione - Se richiesta, la sincronizzazione con l'orario UTC si effettua con ricevitore GPS, collegato via USB. Il software che legge l'Adc, legge anche il GPS e unisce i due dati.

specifiche tecniche
Il parametro per poter valutare lo strumento non è il prezzo ma le specifiche che solo pochissime ditte pubblicano sui loro cataloghi

Alimentazione: 5 Vdc
Consumo di energia: < 5 millesimi di Watt (900 uA a 5 Volt)
Numero di canali: Da 1 a 16 canali a 24 bit (Σ-Δ) (8 differenziali, 15 pseudo o 16 single ended)
Range dinamico: 127 dB @ 100 SPS (con tre canali contemporanei e guadagno 1)
Campionamento: Configurabile da 1 a 16 canali “Differenziali”, “Pseudo” o “Single Ended” 
Sampling rate: Da 10 a 19200 campionamenti al secondo
Fondo scala: +/- 3.3 Vpp (Differenziale) oppure da 0 a 3.3 Volt (Pseudo e Single)
Adc step (x 1): 0.4 uV (Differenziale) - 0.2 uV (Pseudo e Single)
Adc step (x 128): 3.2 nV (Differenziale) - 1.6 nV (Pseudo e Single)
Impedenza di input: Praticamente infinita (> 100 mega ohm)
Corrente di input: Inferiore a +/- 4 nA
Corrente di input: Variazione con la temperatura +/-25 pA/°C
Tensione Massima: Da -0.3 Volt a +3.6 Volt (tensione massima applicabile agli ingressi)
Corrente Massima: +/-10 mA (corrente massima applicabile agli ingressi)
ESD Rating HBM: Human Body Model = 4 kVESD 
Rating FICDM: Field-Induced Charged Device Model = 1250 
VESD Rating MM: Machine Model = 400 V
Uscita 3.3 Volt: Fino a 300 mA, accuratezza (1%), stabilità (48 ppm/°C).
Uscita 2.5 Volt: Fino a 10 mA, accuratezza (0.2%), stabilità (2 ppm/°C tipica).
Uscita 1.6 Volt: Solo per polarizzare i sensori (accuratezza e stabilità pari al 3.3 Volt / 2).
Interfaccia dati: SPI a tre fili, QSPI™, MICROWIRE™ e DSP
Formato dati: Protocollo di Analog Devices (vedere data-sheet dello AD7124-8)
Velocità linea seriale: Da 30 baud a 5 mega baud
Precisione di tempo: Circa 500 uS o inferiore 
Temperatura: Da −40°C a +105°C (funzionale)
Temperatura: Da −65°C a +150°C (in magazzino) 
Dimensioni: 60 x 34 x 12 mm
Tutto il processo di amplificazione, filtraggio e digitalizzazione avvine nell'adconverter dell'ANALOG DEVICE
per cui le specifiche del sistema  di acquisizione sono indicate nei datascit
dell'adc AD71128-8 della Analog Devices.

Il theremino ha solo lo scopo d'inviare i dati digitali al PC e non influisce in alcun modo sulla qualità del segnale acquisito

Sunday, February 24, 2019

dinosaurhunter | Home


Benvenuti a DINOSAURHUNTER


Un Interessante sito sui dinosauri 

Oliver Ali Durante Il Lavoro sul campo Nel Bacino di Turfan, Cina.



This section Contiene Informazioni di Base.
Sono geologo con UN UN dottorato in paleontologia dei vertebrati e Sono Disponibili per il noleggio non da solo venire Direttore di scavo, ma also venire ricercatore, consulente scientifico, lavoratore museo, pianificatore Mostra, editore e autore. Si Prega di osare un'occhiata al mio curriculum, se Siete Interessati a mie qualifiche.

Sunday, February 17, 2019

calcolo della VS di riferimento


di GEOSTRU

Consiglio di visitare questo sito , troverete molti programmi d'ingegneria geofisica e geologia molto utili  di cui molti anche gratuiti

un interessante programma per il calcolo della  VS di riferimento

classificazione suoli ntc-2018


Sunday, February 10, 2019

SHINTREX - GRAVIMETRI, MAGNETOMETRI , TOMOGRAGIA ELETTRICA


http://www.scintrexltd.com


Strumenti terra
Prodotti della terra Scintrex possono essere suddivise in tre categorie:

GRAVITY 

Metri relativi in quanto il CG-5 AutoGrav ™ Gravity Meter per la topografia o il gPhoneX per il monitoraggio.
Oppure metri assoluti come la Gravity Meter FG5-X o le A10 gravimetri portatili



MAGNETICS 

Il ENVI Cs è un magnetometro lettura continua ad alta sensibilità con GPS integrato di navigazione 
Il ENVI PRO Proton Magnetometro con GPS integrato o ENVI Proton Magnetometro



ELETTRICO

Il SARIS misuratore di resistività per le indagini elettrici poco profonde
O il IPR-12 inserito Polarizzazione di sistema per indagini più approfondite sia con un 3KWatt o 10 KWatt trasmettitore.

Sunday, February 3, 2019

Primi test calcolo epicentro

Primi test calcolo epicentro 

Per eseguire i test è stato implementato il calcolo dell'epicentro date le coordinate delle stazioni e l'ora di attivo del terremoto di progetto 
( dati ottenibli dalle stazioni sismiche )

Il prigramma permette partendo dai dati sperimentali ricavare l'epicentro, scartando automadicamente i dati che non appartengono al terremoto considerato.

Nell'esempio il pallino rosso dell'epicentro ipotizzato come test in blu appena visibile sotto a quello con ubicazione del terremoto calcolato di progetto.

Si potranno calcolare epicentri anche da 20 30 stazioni in contemporanea scartando i segnali non validi

In blu l'ubicazione delle stazioni, in questo caso 4

Errata corrige
la tabella dei dati T epicentro è errata i dati vanno letti in senso contrario

Friday, January 25, 2019

NET Hal rete acquisitori hal

NetHAL – Comunicare via radio con i NetModule
nel sito THEREMINO SI LEGGE:
Il sistema è completamente “Freeware”, “Open Source”, “No Profit” e “DIY”,

Il team del sistema Theremino si occupa solo di ricerca e non vende hardware. 



 Nel sito Theremino   http://www.theremino.com/downloads/foundations#nethal  si legge:   

Il NetHAL mette in comunicazione i NetModule con il software ad alto livello, via WiFi e rete.

Si aprono possibilità non realizzabili con i Master, ad esempio posizionare una camera a ioni o un geiger in locazioni difficili da raggiungere con un cavo di segnale.
Oppure costruire veicoli controllabili via Wifi, come si vede nel video Missione su Marte.


NEL MANUALE SI LEGGE:

I NetModule si alimentano a 5 volt e comunicano via WiFi con un Access Point. 

Si possono collegare fino a 9 sensori e/o attuatori ai connettori marcati da D1 a D8 e ADC. 

Sui connettori sono comodamente disponibili le tensioni di 5 volt e di 3.3 volt. 

L'Access Point può fare da ponte per cui qualunque Notebook, Tablet, o PC con Windows può collegarsi ai Net Module. 

Si possono qundi leggere i dati sul PC e anche trasferirli da un NetModule a un altro. 

Si potrebbe ad esempio collegare un potenziometro a un NetModule e con questo ruotare un servo che si trova su un altro. 

Si possono anche trasferire i dati da e verso i moduli Master o gli Arduino, in qualunque numero e combinazione. 

Si lancia la applicazione NetHAL e si configurano i Pin di ingresso uscita per leggere sensori, muovere motori ecc.. 

Si utilizzano le oltre cento applicazioni del sistema theremino che coprono quasi tutti i campi, dagli esperimenti scientifici ................

scaricare il manuale 


              pc  con Wi Fi

no cavo 
no cavo di battuta
no avvolgitori
no connettori sismici


nuovo!! WiM 



Theremino Net Module V1 IoT 

Scarica l'applicazione NetHAL collega i NetModules con software di alto livello, tramite WiFi e rete.

È quindi possibile leggere i sensori e spostare i motori via radio. 

Ci sono anche molte possibilità di controllo che il cavo corto USB reso scomodo o impossibile.

Theremino NetHAL. Theremino SlotViewer 

Per maggiori informazioni: http://www.theremino.com/downloads/foundations



esistono ancora dei problemi tecnici da superare.......


AGGIORNAMENTI DA THEREMINO


DOMANDA:

Il firmware NetModule non è in grado di connettere l'Adc24 e non lo espanderemo a causa delle scarse capacità dell'ESP8266. 
Ma ci sono buone notizie per te!

RISPOSTA
Stiamo sviluppando un nuovo modulo, basato su Expressif ESP32. Il nuovo modulo è simile al nostro Master (collegabile via USB), al NetModule (WiFi) e programmabile anche come Arduino (tramite l'IDE Arduino). Inoltre è molto potente (32 bit e 250 MHz) e ha 26 pin in-out. 
Sarà anche collegabile all'Adc24 (usando una libreria Arduino).

Il nuovo NetModule sarà pronto nei prossimi tre mesi e avrà le seguenti caratteristiche:




============================ 
ITA - Caratteristiche degli IotModule
============================ 

- Gestione immediata degli Input-Output, come mpre con il sistema theremino. 

- Potenza notevolmente maggiore (240 MHz di clock contro i 16 MHz attuali). 

 - Supporto per operazioni veloci sui numeri in virgola mobile Single e Double. 

- Processore Dual-Core a 32 bit (contro i 16 bit attuali). 

- Funzionamento via WiFi come il NetHAL

- Programmabile con lo stesso IDE di Arduino 

- Funzionamento anche via USB come i soliti Master 

- Possibilità di programmarlo facilmente per leggere sensori speciali - 8 ingressi ADC a 12 bit (14 sovracampionati) contro i 10 bit attuali (12 sovrac.) 

- Possibilità di usare gli stessi firmware e librerie di Arduino 

- Numero di Pin notevolmente maggiore (26 contro i 12 attuali) - 3 interfacce SPI 

- 18 ingressi ADC a 12 bit se il modulo è connesso via USB (non WiFi) 

- 2 uscite DAC a 8 bit 

- 10 ingressi capacitivi - 16 uscite PWM speciali per i motori (motor PWM) 

- 3 interfacce UART 

- Costo dei moduli anche minore dei Master attuali 

- 2 interfacce I2C 

- 2 interfacce I2S 

- 4 timers a 64 bit 

- Memoria flash integrata 

- 520 kByte dati e cache 

- 4 Mega Byte di programma (flash) 


=========================================
ENG - IotModule featur
========================================
 
Immediate management of Input

-Outputs, as always with the theremino system. 

- Floating point support for Single and Double precision fast operations. 

- Significantly higher power (240 MHz clock vs. current 16 MHz). 

- 32-bit Dual-Core processor (against the current 16 bits). 

- Possibility to program it easily to read special sensors 

- Operation via WiFi as the NetHAL 

- Operation also via USB as the usual Masters modules 

- Programmable with the same IDE of Arduino 

 - 8 12-bit ADC inputs (16 oversampled) against the current 10 bits (14 oversampled) 

- Possibility to use the same Arduino firmware and libraries 

- Significantly higher number of pins (26 against the current 12) 

- 18 12-bit ADC if the IotModule is connected via USB (not WiFi) 

- Integrated flash memory 

- 2 8-bit DAC outputs 

- 10 capacitive inputs 

- 16 special PWM outputs for motors (PWM motor) 

- 3 SPI interfaces 

- 3 UART interfaces 

- 2 I2C interfaces 

- 2 I2S interfaces 

- 4 64-bit timers

- Cost of the modules even less than the current Masters - 520 kBytes for data and cache 

- 4 mega bytes for program (flash memory) 



Sunday, January 20, 2019

Open Office Versione in Italiano


La suite libera e completa per l'ufficio



Il programma comprende:

Word processor compatibile con Word
Tabellone elettronico compatibile con Excel
Database compatibile con Acces
un programma per presentazioni multimediali compatibile con Pawerpoint
Un editor di formule matematiche
Un bel programma per disegnare in modalità vettoriale su più Layer
Possibilità di fare e pubblicare le proprie pagine web
possibilità di esportare i propri files di testi in formato pdf utili per trasmettere via email perchè molto più compatti di un normale file doc e leggibile in tutti gli ambieti operativi
molto altro ancora


Sunday, December 23, 2018

BUONE FESTE CON TANTI REGALI





BUO   2019

con tanti doni
da 
THEREMINO

nei primi mesi del 2019 ci saranno novità nel campo acquisizione dati  per le applicazioni di geologia - geofisica.

Applications Geologia


nel 2018 saranno sviluppati i seguenti progetti:



1) miglioramenti del TROMOGRAFO software ed hardware - miglioramenti software ed hardware

2) completamento DOLQUAKE in fase di completamento

3) MAGNETOMETRO 3D per registrazione  variazioni campo magnetico terrestre

4) MONITORAGGIO fessurimetri , inclinometri e  misure di spostamento 

5) MAGNETOMETRO GRADIOMETRO per indagini geologiche- arceologiche, ricerca sottoservizi, cercametalli ecc

6) SISMOGRAFO 12 16 CANALI canali per rifrazione - medio lunga, riflessione, Masw, remi ( acquisizione di durata da pochi minuti a ore se necessario in continuo) esac ecc


7) TOMOGRAFIA ELETTRICA  24 36 48 elettrodi 

 manuale - automatica con relè e tecniche di acquisizioni particolari




cliccare qui per visionare le novità



PROGETTI OPENSOURCE FREE ONLINE


Theremino Dolfrang



Geopsy 



Sondaggi HV 



Sondaggi geomagnetici


Sismometri 


Sondaggi geo-elettrici 


Meteorologia 


Theremino Meteo 

Rivelatore di fulmini 
Spettrometria delle polveri 



Sensori meteorologici 



Primi passi con i LED

Primi passi con i servo-motori

Sensori e adattatori

Automazione

Audio e Video

Biometria

Radioattività

Strumentazione

Programmazione

Sistemi alieni

Varie

http://www.theremino.com/applications
free
----------------------------------------
Invito tutti gli amici di theremino.com a fare una piccola donazione a Theremino il Baabbo Natale dei geologi e non solo... Grazie
Buone feste e Buon anno a tutti
Dolmetta Angelo

Nel sito theremino.com si legge:


Donazioni

Il codice sorgente dei nostri programmi non contiene note sul copyright, nomi degli autori e link al nostro sito, per cui potete farne ogni uso, senza limitazioni di alcun genere. Non chiediamo di specificare la fonte originale o il nostro sito ma se sarete contenti del nostro software ricordatevi di noi e fate conoscere questo sito ai vostri amici.

Eventuali donazioni, anche piccole, sono molto gradite e possono aiutarci a mantenere il software “free” ed a produrne sempre di nuovo.

a fine pagina della home di theremino.com troverete un banner per fare una piccola donazione 

Wednesday, December 19, 2018

Sismografo sperimentali - Il trigger


Per sismica a rifrazione e riflessione , 
MASW, REMI, ESAC e tomografia sismica

Il progetto è superato
lo schema è ancora più semplice


seguirà un terzo prototipo ancora più semplice e meno costoso da realizzare.

Parte 2° IL TRIGGER

in questa seconda parte ci occuperemo del trigger  elemento fondamentale per sincronizzare l'inizio dell'acquisitore con la mazzata di starter

23-09-2015
Campo di sperimentazione
foto di Simone Sette
Per eseguire le sperimentazioni occorre un luogo come questo

1) immerso nella natura 
2) assenza di rumori antropici
3) pianeggiante e privo di asperità morfologiche 
4) stratigrafia senza inversioni di velocità e omogeneo in senso orizzontale
5) suolo soffice per permettere di approfondire gli spyke dei geofoni senza fatica. 

6) un suolo sufficientemente morbido per  fissare i geofoni 

 primo prototipo di sperimentazione 6 canali
foto di Simone Sette


La strumentazione sarà costituita  da 2 - 3 cavi a 6 canali per ottenere 12- 18 cnali, andare oltre potrebbe essere inutile ma possibile.

Ogni cavo sarò autonomo , costituito da
6 geofoni  ( meglio se da 4,5 hz)
6 dviatori per geofono,  2 -3 cavi USB,
6 geofoni con bracciolo da 1m.
1 scatola per ogni cavo contenente theremino ed amplificatori

1 piastra in alluminio
2 - 3 avvolgitori piccoli per il cavo
1 - 2 rotelle metriche
1 bauletto per contenere tutto il materiale
1 tablet window da 100 euro   con monitor > 8 pollici meglio se > di 10 e/ o pc o pc-tablet


sondaggio eseguito da Simone Sette
Prima traccia geofono start  con gain  40

CASO 1) start contatto mazza piastra , il dt massimo è  pari al tempo di campionamento del dato acquisito  
CASO 2 start eseguito con geofono starter, il grafico fa vedere che lo starter  con geofono ha un ritardo dT rispetto all'analogo test eseguito con il contatto meccanico piastra - mazza.

Nel caso di utilizzo di starter piezoelettrici esiste un dT , ma in questo caso molto più piccolo di quello ottenuto con un geofono trigger


Seconda traccia - 5° geofono a distanza di una quindicina di metri dal punto di battuta,
durata di acquisizione  1500 m.sec secondi, frequenza di campionamento 1000 hz.


28-09-2015

Spesso  si usa come starter il geofono  fidandoci che inneschi il processo di acquisizione nell'esatto istante in cui si è dato lo start, non sempre la cosa è sempre vera.

Si consiglia di provare il sistema  prima con uno starter ON / OFF poi con il geofono per  vedere se il tempo del primo arrivo è sempre lo stesso, consiglio di dare mazzate deboli,  medie , forti e fortissime per verificare che i tempi siano sempre gli stessi

Consiglierei lo starter Piezo che da valori bassi sempre e supera il 500 solo durante il colpo.
In questo modosi potrà usare un qualunque input digitale ( DigIn )
che è valido per tutti i PIN di tutti i moduli (anche fino agli 11 e 12 dei nuovi master)

In questo modo con n° 2 Theremini  è possibile  realizzare un 12 canali in quanto come canale trigger può essere utilizzato il pin 7,8,9,10,11,12 deni nuovi master > V 4.0


Come funziona ?

il geofono  quando è in quiete genera un segnale di ampiezza molto piccola, quando viene eccitato da una mazzata produce segnali di ampiezza elevata  mandando spesso in saturazione il segnale se non ben regolato.

Il funzionamento è quello di sfruttare questa proprietà, quando il segnale supera il valore di soglia il software se ne accorge e da l'ordine al sismografo di far partire la procedura di acquisizione, nel caso contrario rimane in attesa.

Senza addentrarci  nelle diverse tecniche  utilizzate nel gestire via software o via hardware lo starter, l'operatore deve conoscere  i limiti del metodo per non rischiare di ottenere risultati errati.

Importante è in valore di soglia  che determina il valore in  cui deve avvenire  lo starter dell'acquisizione, se ci riferiamo alla figura precedente traccia superiore che mostra il grafico dell'andamento del segnale generato da un geofono eccitato da una mazzata posizionato nelle vicinanze della piastra di battuta si possono ipotizzare diversi comportamenti.

1) ipotizziamo ( caso rarissimo ) dove il rumore ambientale = 0, e di aver impostato il valore di soglia = 0,01,  nell'esatto istante  in cui  si a da mazzata scatta la procedura di acquisizione come si vede in figura ( tacca rossa )

Il geofono posto ad una certa distanza evidenzierà il primo arrivo delle onde P dopo un certo intervallo di tempo dT che è quello trascorso dall'istante  0 e il tempo Tr  ritardo.
Per eseguire questa prova nel software è stato inserito un pretrigger che mostra il segnale prima dello starter ( parte  sinistra della linea rossa )

 caso 2)  normalmente il rumore di fondo del sito non avrà mai un valore = 0 , i microtremori  ce lo insegnano, quindi se imponiamo un il valore di soglia indicato  nel caso 1 di 0,01  avviata la procedura  di attesa della mazzata al primo tremolio del terreno avviene il superamento della procedura di acquisizione senza aver dato  la mazzata rendendo nulla l'acquisizione fatta.

caso 3)  Nel caso  della figura precedente dovessimo impostare  un  valore di soglia pari a 15, valore superiore almeno di 5 volte del rumore ambientale che varia nell'esempio varia tra +/- 2 avremo l'avviamento dell'acquisizione ma con un piccolo ritardo valutabile fra 1 e 5 millisecondi, tale errore produce  una sottovalutazione del tempo di arrivo  della onda P, di conseguenza una sovrastima della Vp.

caso 4) Nel caso in cui la parte positiva dell'esempio fosse stata quella rivolta verso il basso  e con valore di soglia = 30 si ottiene un tempo di starter  errato che genera un errore grossolano nella determinazione del tempo T0, il dT si sarebbe praticamente dimezzato rispetto al dT reale con conseguente sovrastima della vs anche in questo caso.

caso 5)   A livello di software e in maniera più complicata a livello di Hardware è possibile usare il modulo del valore di soglia, ciò permette  al trigger di funzionare anche con polarità invertite del segnale di starter.
Se la polarità dei geofoni nei casi 1 - 4 fosse stata invertita, usando i valori di soglia precedentemente indicati non avrebbero fatto partire l'acquisizione in quanto un valore  -30 , ad esempio, non avrebbe soddisfatto le condizioni di avvio dell'acquisizione.
Usando il modulo ciò viene resa possibile ma senza migliorare il risultato finale

caso 6)  aumentando a 60 il valore soglia , è evidente che ci troviamo in una condizione sempre peggiore a quelle precedenti il tempo To  sarebbe  maggiore al tempo di arrivo del segnale registrato dal geofono con conseguente perdita della parte iniziale del segnale.

caso 7) L'ultimo caso  è duello di usare un valore di soglia più alto del valore massimo prodotto dal geofono starter, in tal caso l'acquisizione  non parte in quanto la relazione  che avvia l'acquisizione non viene verificata.

CONCLUSIONI SULL'USO DEL GEOFONO START

Come si è visto i migliori dati  si hanno quando il valore di soglia si pochissimo il rumore del sito quel tanto che basta per far scattare il trigger a causa di un rumore antropico.

Per migliorare la funzionalità del geofono trigger  è possibile inserire un circuito che abbia il compito , facendo ruotare una manopola per regolare la sensibilità del trigger in modo da evitare partenze dell'acquisizione, in tutti i casi ciò  fa comportare uno delle problematiche  dei casi 2-7 precedentemente descritti.

Quanto detto va contro a quanto spesso viene consigliato di dare la mazzata vicino al geofono che si vuole usare  come punto di start, in particolare per la mazzata centrale che si solito va data tra il 6 e 7 geofono.

Non è possibile neanche settare il trigger per determiati valori di soglia perchè dipendono

1) dalla caratteristiche del geofono - sensore usato
2) amplificazione e sensibilità del sistema usato
3) intensità della mazzata
4) rumore ambientale
5) energia sviluppata del mezzo battente ( forza applicata )
6) tipo di terreno
7) tipo e dimensioni della piastra
8) distanza dal centro della piastra e il geofono
9 valore di soglia impostato
10) sall'algoritmo utilizzato per gestire l'evento a livello Hardware che software
11) .......... altro ...............

Per ottimizzare ciò occorrono algoritmi software (che penso non vengano utilizzati nei normali strumenti) che eseguano test e verifiche in fase di acquisizione e l'individuazione del vero istante  T0 con l'analisi post acquisizione del dato prima della sua visualizzazione, saranno tecniche sperimentate nel programma di acquisizione, in pratica occorre realizzare un " triggeraggio intelligente".

Anche se in maniera meno evidente tutti le tecniche do triggeraggio chi più e chi meno hanno questi problemi più o meno evidenti, per tanto tecniche di triggeraggio intelligenti possono ridurre i margini di errore.


sondaggio eseguito da Simone Sette


Il sondaggio rappresenta la registrazione di circa  20 msec in contemporanea di 5 geofoni verticali posti con distanza intergeofonica di 3 metri, non è stato energizzato il terreno, per misurare l'entità in ampiezza del rumore sismico del sito ( assenza di rumori antropici e vento ).


09-09-2015

L'amico Simone Sette in data odierna mi ha mandato  alcune acquisizioni eseguite   sul campo di prova,

Il programma ha ancora molte cose da sistemare, si è usato un tabellone elettronico per visualizzare il sondaggio , questo è il risultato ( fatto con acquisitore da 10 euro e una manciata di resistenze e piccoli integrati - un particolare grazie a Simone ) :


cliccare sull'immagig
ne per ingrandirla

12-10-2015

CONSIGLI SULL'USO DEI TRIGGER STARTER

dalle prove fatte scarterei i geofoni perché hanno una elevata inerzia per superare il valore di soglia impostato, è possibile a livello di software è possibile ricostruire il tempo To della mazzata ma in condizioni di rumore ambientale o per segnali con ampiezza simile ai rumori ambientali è possibile ottenere risultati errati.

STARTER GEOFONICO

SI SCONDIGLIA DI NON UTILIZZARE  I GEOFONI COME STARTER ANCHE CON STRUMENTAZIONI PROFESSIONALI, provate con un geofono e poi con uno starter meccanico e controntate i tempi di arrivo con un geofono medio- lontano......

STARTER MECCANICO
----------------------------------------
Un eventuale starter meccanico va collegato tra SIGNAL e GND e SENZA collegare il +5V
Poi si deve impostare il PIN come DigIn-PU (il PU vuol dire PULL-UP e ci pensa il Theremino a dare la tensione che serve all’interruttore)
  
STARTER PIEZOELETTRICO
----------------------------------------
Consiglio questa versione perché costa poco e da un segnale forte e pulito.
In questo caso il segnale partirebbe da numeri bassi (da 5 a 20) e sicuramente sotto al 500.
E salirebbe a 800 o 900 in tempo brevissimo ad ogni mazzata.


Adattatori per i sensori piezoelettrici
da theremino.com

Gli adattatori che proponiamo sono semplici da costruire e funzionano meglio dei molti schemi che si trovano su internet.
Attenzione: Il principio di funzionamento dei nostri sensori non è lo stesso di quelli delle batterie commerciali. I segnali non sono intercambiabili. 
Per ottenere le massime prestazioni, i nostri sensori non trasmettono un segnale audio, ma un valore proporzionale alla pressione esercitata. 
Questo ci ha permessi di ottenere un controllo del suono e una dinamica, superiori a quelli delle batterie elettroniche commerciali, con i classici Pad non alimentati.

continua nel sito

per ulteriori informazioni si rimanda alla seguente interessantissima pagina
http://www.theremino.com/hardware/inputs/piezoelectric-sensors#adapters


Attenzione a girare il dischetto piezo fisicamente nel senso giusto in modo che dia il segnale al fronte di salita del colpo e non al fronte di discesa, che arriverebbe qualche millisecondo dopo.

esecuzione di acquisizione Remi di durata 10 minuti ottenuta in continuo  - a 2 canali senza interruzioni con visualizzazione del segnale acquisito in tempo reale - frequenza di campionamento
500 hz   - progetto in fase di sperimentazione e test

giugno 2018 sperimentazioni  fatte dall'amico Salvatore 


Post più popolari ultimi 7 giorni

Post più popolari Ultimi 30 giorni

Post più popolari da sempre

CERCATE l'argomento che vi interessa qui...... Elenco completo

.sismologia (1) accelerazione (1) accelerometri (3) acquisitor (1) acquisitore 24 bit (1) acquisitore dati 24 bit (2) acquisitore sismico (1) acquisitori (24) acquisizione (33) ACQUISIZIONE DATI (1) acustica (2) adc 24 bit (2) adconverter (7) aerei (1) Algoritmi genetici (2) allarme terremoti (3) ambiente (2) amperometro (1) amplificatori (10) analisi di spettro (10) analisi sismica (3) analizzatore audio (1) Analizzatore di spettro (2) Android e Mac OSX (1) Annunci (1) archeologia (3) architettura (1) ArduHAL (1) arduino (17) arduino mini (1) arduino programmi (2) ASCONVERTER (1) astronomia (3) atterberg (1) Auto Correlation (1) barometro (1) battimento (1) bibliografia (5) biometria (1) c# (2) cad (8) calcolo strutturale (1) Calibrazione sismografi (2) carsismo (1) carte geologiche (1) cartografia (16) catalogo terremoti (4) cavi (1) cedimenti (1) celle di carico (1) cerca metalli (2) certificazioni energetiche (1) chimica (2) circuiti stampati (1) Clara Rockmore (1) cobian (1) Coherence physics (1) collaudi (1) collezioni (8) comunita di geologia (1) conchiglie (1) contatore Geiger (2) Continuous Wavelet Transform (1) controlli edifici (1) conversione seg2 (1) correlazione (2) corsi (1) costruire un . theremino (1) covarianza (1) cristallografia (2) Cross Correlation (3) curve di livello (1) datalogger (12) datalogger 24 bit (1) dataloggerthereminoStore (1) dinosauri (1) DOLFRANG (1) dolquahe (1) dolquake (4) domotica (1) dos (1) down hole (2) drum (2) earth quake (2) Earthquake captures (1) ECG (1) elettromagnetismo (3) elettronica (51) emergizzatore SEV (1) encnder (1) energizzatore (3) epicentri (14) Epicentro calcolo (2) equalizzazione (2) esac (7) etna (1) faglie (2) fessurimetri (1) fft (20) filtri (3) filtri digitali (3) filtri hardware (2) filtri software (2) fisica (1) fk (1) flessurimetri (1) fluidificazione (1) fluorescenza (1) fondazioni (5) fonometri (3) fonometria (2) fossili (20) Fotocamera infrared (1) fourier (17) frane (3) freatrimetri (1) frequenza di risonanza (1) ftan (2) fulmini (1) geochimica (1) geoelettrica (22) geofisica (12) GEOFLUID PIACENZA (1) geofoni (28) geofoni 3d (12) geofono 3d (1) geofono 3D USB (5) geofono ed usb (1) geofuid (1) geogono (1) geologia (16) geomorfologia (1) georadar (7) georesistimetri (3) geotecnica (13) geotermia (1) gepfoni (1) gis (7) glaciologia (1) gps (3) grafica (1) grafici3d (1) gratis (75) gravimetri (1) gravimetria (1) grm (1) hel dolquake (1) help online (1) hvsr (53) hvsr sperimentazioni (25) idraulica (3) idrogeologia (5) ifft (6) IGM (1) impedenza (1) impianti (1) informatica (1) ingegneria (4) ingegneria sismica (5) interdol (1) inversione (1) Java (1) leggi (2) libri (8) libro (1) linux (1) Linux (1) liquefazione (5) litologia (1) LL.PP (1) logs (1) luna (1) magnetismo (2) magnetometri (14) magnetometria (10) magnitudo (1) manuale (2) Manuale acquisitore (5) manuale datalogger (10) manuale dinver (8) MANUALE DOLQUAKE (8) manuale geopsy (12) manuale sismografo (1) manuale sismologia (2) manuale tromografo (27) manuali (6) manuali sismogrago (1) mappe (3) MASR (1) masw (28) maswr (2) matcad (2) matematica (4) matlab (1) matrici (1) Meccanica (1) mercalli (1) metal detector (1) meteo (13) microcontrollore (1) microcontrollori (3) microfossili (1) micropali (1) microtremori (30) minerali (13) mineralogia (17) misure di vibrazione (2) misure di vibrazzioni (1) module elastici (1) moduli elastici (2) monitoraggio (5) moto ondoso (1) multimedia (1) muri (2) musei (7) museo (1) musica (1) NAKAMURA (1) NASA (1) negozi (3) Net Hal (1) ntc 2008 (4) ntc2008 (25) oceanografia (3) onde sismiche (3) ordini regionali (10) ortofotocarte (1) oscilloscopi (3) Overcoring (1) palentologia (1) paleontologia (22) pali (4) pancometri (1) Paratie (1) Partitore (1) pdf (13) penetrometri (1) penetrometro (1) pericolosità sismica (5) permeabilità (1) petrografia (2) Phase correlation (1) Phase speed (1) Phase) (1) pianeti (1) placche faglie (1) plinti (1) Portale di geologia (1) portali (1) portanza fondazioni (2) potenza (1) produttori di georesistimetri (6) produttori di geofobi (1) produttori di geofoni (18) produttori di georesistimetri (1) produttori di magnetometri (7) produttori di simografi (2) produttori di sismografi (17) produttori di tromograf (1) produttori di tromografi (14) Programma (1) programma DEPSOIL V5.1 (1) Programma EERA (1) programma ESAC (1) programma NERA (1) programma rexel (1) Programma Seisan (1) programma SSAP 2012 (1) Programma strata (1) programmazione (7) programmazione arduino (1) programmi (50) programmi di geofisica (20) programmi di geologia (37) programmi di sismologia (4) programmi geotecnica (1) programmi GIS (1) programmi ingegneria (1) programmi utili (13) protezione civile (1) proto 0 (1) protoripo 8 (1) PROTOTIPI (12) prototipo 1 (1) prototipo 2 (1) prototipo 3 (1) prototipo 5 (1) PROTOTIPO 6 (1) prototipo 7 (1) prototipo 8 (2) prototipo 9 (4) protoyipo 9 (1) prova di carico (1) prova di permeabilità (1) prova di portata (1) prove di carico (1) prove in foro (1) prove inclinometriche (1) prove penetrometriche (1) Python (2) RA (1) radar (2) radio emissioni (1) radioamatori (2) radioattività (4) radiocontrolli (1) Radom (2) Raspberry Pi (1) remi (20) rete (1) rete sismica (10) rete sismica theremino (3) rete WF (1) reti sismiche (1) richter (1) riflessione (1) rilevamento (1) rischio sismico (8) risonanza terremoti (1) robotica (1) rocce (2) RSL (1) scheda sonora (4) scissometri (1) sclerometri (1) SDR (1) sedimentologia (1) seg2 (1) segy (1) sensore radom (1) sensori (31) sensori accelerometrici (13) sensori ad ultrasuoni (1) sensori cardiaci. THEREMINO (1) sensori di umidità (3) sensori di carico (1) sensori di cedimento (1) sensori di contatto (2) sensori di coppia (1) sensori di direzione (1) sensori di inclinazione (1) sensori di livello (2) sensori di portata (1) sensori di posizione (2) sensori di pressione (6) sensori di prossimità (1) sensori di spostamento (3) sensori di temperatura (8) sensori di torsione (1) sensori di umidità (2) sensori di velocità (1) sensori di vibrazione (2) sensori estensimetri (1) sensori fessurimetrici (2) sensori fulmini (1) sensori geiger (2) sensori inclinometrici (1) sensori laser (1) sensorI magnetometricI (2) sensori meteo (1) sensori ossigeno (1) sensori piezoelettrici (1) sensori polveri (1) sensori potenziometrici (4) sensori radom (1) sensori velocimetri (2) sensori velocimetrici (11) sensori;sensore fulmini (1) sev (18) sev theremino (1) sezioni stratigrafiche (1) sezionisottili (1) Shilab (1) sicurezza (2) simologia (1) sismica (23) sismica a riflessione (18) sismica a rifrazione (24) sismica passiva (1) sismica rifrazione (1) sismicità (1) sismo (1) sismografi (41) sismografo (13) SISMOGRAFO 24 BIT (2) sismografo a pendolo (1) sismografo sperimentale (3) SISMOGRAFO THEREMINO (8) sismogrago (1) sismologia (80) sismologia acquisitori (15) sismometro (1) siti (2) smorzamento (1) software (3) sole (1) sonda Winsor (1) spazio (1) spectrometro (1) speleologia (1) sperimentazione (2) sperimentazioni (4) spettri di risposta (8) spettri elastici (4) spettrogramma (1) spiker's (1) spostamento (1) stabilità versanti (5) stati limite (1) statistica (3) stazione meteo (1) stazione sismica (12) stazione sismica a pendolo (1) stazione sismica theremino (1) stazione sismica theremino dolfrang (1) stazione sismica. (1) stazione sissmica - rete sismica theremino dolfrang (1) strumentazioni (22) strutturale (2) tavola vibrante (2) temporali (1) Teremino (3) termocamere (1) termometri (1) termometro (1) terra (1) terremoti (39) terremoti in tempo reale (2) terremoti online (28) terremoti online . terremoti in tempo reale (1) terremoto bologna (1) terremoto di amatrice (1) terremoto di progetto (5) terremoto perugia (1) terremoto rieti (1) terrenoti (1) test hvsr 02 (2) test hvsr 03 (1) test hvsr 04 (1) test hvsr 05 (1) test hvsr 07 (1) test hvsr 08 (1) test hvsr 09 (1) test hvsr 10 (1) test hvsr 12 (1) test hvsr 13 (1) test hvsr 14 (1) test hvsr 15 (1) test hvsr 16 (1) test hvsr 17 (1) test hvsr 18 (2) test hvsr 20 (1) test hvsr 21 (1) tettonica (3) theremin (1) Theremino (63) thereminoStore (7) Therenino (1) Time Frequency (1) tiranti (1) tomografia (2) tomografia elettrica (13) tomografia magnetica (1) tomografia sismica (7) trasduttori (1) tromografi (15) tromografo (6) TROMOGRAFO 24 BIT (11) tromografo sperimentale (17) TROMOGRAFO THEREMINO (1) trompgrato sperimentale HVSR (1) ufo (1) utilità (1) varianza (1) velocità (1) velocità di fase (1) verifica sismica edifici (1) vibrazioni (5) video (8) visitatori (1) visualstudio (1) vlf (1) Volmetro (1) vs (1) Vs di riferimento (1) vs30 (7) vulcani (1) vulcanologia (1) Wave (1) zonazione sismica (41) zone sismogenetiche (1)

ultimi 30 gg