comunità di geologia

martedì 12 novembre 2024

Disk UFO Theremino - tromografo per HVSR





PROTOTIPO TROMOGRAFO SPERIMENTALE - SISMOGRAFO 

UFO

Monitoraggio fabbricati . sismografo
il grande Lello, una delle colonne portanti del progetto THEREMINO






La forma individuata è il risultato di alcune considerazioni sperimentale non per motivi estetici o di designer:
1) forma circolare per avere la minima resistenza al vento
2) cupola semisferica ribassata per avere la minima resistenza al vento
3) baricentro molto ribassato per avere la massima stabilità
4) Peso aumentato da una zavorre in piombo
5) Diametro sufficientemente largo per avere una maggiore stabilità
6) materiale in policarbonato per isolare acusticamente i geofoni dai rumori antropici ed ambientali







seguono tre immagini degli spaik,s di appoggio sul terreno dello strumento

lo 
spike e bullone di fissaggio



Bullone di fissaggio




i tre spike's  montati

CONTROLLATE SE IL VOSTRO STRUMENTO OSSERVA QUESTE PRESCRIZIONI. NE POTRETE VALUTARE LA FUNZIONALITA'
Purtroppo molti di questi punti non vengono considerati dalle norme UNI che si limitano a dire quanti campioni 
si devono acquisire, la durata dell'acquisizione , i bit necessari, eventuali gain ecc senza considerare gli elementi sopra accennati molto importanti per una buona riuscita dello strumento.


Per la realizzazione dell'ufo si è cercato di evitare errori di progettazione spesso sottovalutati in certi strumenti professionali;
1) I cavi non devono essere posizionati verticalmente rispetto allo strumento perché causano vibrazioni dovute al vento, il cavo ha l'effetto " bandiera " generando frequenze orizzontali che non hanno nulla a che fare con i microtremori....
2) aumento sella larghezza della base di appoggio, in questo modo i tre puntali che poggiano sul terreno aumentano la stabilita dello strumento e garantiscono una riduzione della rumorosità strumentale indotta da vento e rumori antropici
3) distanza identica tre i vari puntali, in questo modo si ha una eguale distribuzione a 360 ° delle vibrazioni indotte del terreno
4) con il piombo di zavorra si è aumentato la pressione sul terreno evitando cosi saltellamenti verticali e garantendo una maggiore aderenza e continuità tra terreno e strumento
5) La zavorra in piombo posizionata nella arte medio bassa della piastra e l'alleggerimento della cupola hanno spostato il baricentro strumentale a pochi cm dal piano di appoggio sul terreno, ciò va a favore della stabilita
6) La forma rotondeggiante della piastra e la forma semisferica della cupola permette di avere un alto grado si permeabilità al vento, possibile affondate la piastra di 4- 5 cm nel terremo estirpando la cotica erbosa superficiale, in questo modo dal piano si campagna spunta solo la cupola riducendo ulteriormente l'effetto vento.
7) Isolamento acustico del geofono grazie allo spessore della cupola, in questo modo di riduce l'effetto "microfono" dei geofoni che trasformano i rumori acustici in fastidiosi disturbi e rumori random.
8) Spessori centimetrici delle pareti dell'ufo per evitare vibrazioni dannose dovute a spessori millimetrici dei contenitori spesso in plastica della scatola utilizzata.
9) minima superficie laterale per ridurre l'impatto con il vento
10) la forma tondeggiante e semisferica della piastra e della cupola permette di avere la medesima disposta al vento in tutti i 360 gradi
11) contenitore basso e largo, e pesante al contrario di molti strumenti stretti alti e leggeri con pareti di lamierino sottile (vere casse acustiche), il contrario di come dovrebbero essere.
12) Molta cura nel posizionamento all'interno dello strumento dell'elettronica e dei geofoni, riduzione al massimo di componenti inutili che hanno lo scopo di sporcare il segnale e una cura per schermare il segnale da inquinamento elettromagnetico.
Piccoli accorgimenti che sommati tra loro permettono di migliorare ulteriormente le prestazioni meccaniche del contenitore spesso poco curato
Provate a vedere su base 12 quanti sono i punti rispettati dal Vostro sistema di acquisizione, potrete valutare la cura con cui è stata realizzata la meccanica strumentale.

PROTOTIPO 0 - tromografo sperimentale per HVSR 1) con ARDUINO - 2 con THEREMINO

Tromografo sperimentale 
Languamply 4500 RE
v rif. 3,3 volt
( un vecchio post ripubblicato) uno dei primi prototipi di tromografi sperimentali 


Ora prendiamo il caso di un progetto con tecnologia esattamente all'opposto della tecnica utilizzata con il 24 bit usata quasi sempre dai tromografi professionali in commercio.

L'utilizzo di un 10 bit vuol dire avere un segnale 8000 volte meno definito e con altrettanta meno dinamica rispetto a quella di un 24 bit.

In questo caso le problematiche hardware aumentano e la buona riuscita del progetto sono legate alla qualità dell'amplificatore applicando tutte quelle soluzioni tecniche per ridurre al massimo il rumore hardware.



Maggiore è il rapporto segnale/rumore maggiori saranno le prestazioni hardware, nel nostro caso si è ridotta l'amplificazione a 4500 sapendo già che collegando il sistema ad un adc a 12 - 14 - 16 bit la definizione finale del sistema porta a 500 nanovolt che è la medesima a quella di un 24 bit o superiore.

Il prototipo per il momento è ancora montato su basetta millebuchi con fili volanti soggetto a runori hardware con contatti tra geofoni - amplificatori e acquisitore volanti, utilizzo di cavi elettrici per il momento non schermati e collegati a tre geofoni tradizionali 2 orizzontali e uno verticale da 4,5 hz invece del necessario geofono 3D che rende solidale il moto dei tre geofoni e ne migliora il rendimento.


Occorre tener presente che la prova sismica è staata fatta su sedimenti a basso contrato sismico e probabillmente con piccole variazioni stratigrafiche dello strato superficiale sabbioso fino alla profondità corrispondente alla frequenza di risonanza di 2,5 hz.

Ora occorre passare ad un prototipo realizzato su circuito stampato che permetterà di avere un segnale notevolmente più pulito e professionale collegato ad un geofono 3D e magari con il sistema di amplificazione delle immediate vicinanze al fine di evitare l'introduzione di rumori hardware nel sistema come avviene in parte ora.

Il luogo è vicino ad una strada con traffico, se eseguiamo una acquisizione breve 10 minuti abbiamo difficoltà a trovare almeno una ventina si intervalli temporali di 12 - 30 secondi con livello di rumore relativamente basso per poter utilizzare per il calcolo dello spettro.

in questi casi è consgliabile eseguire sondaggi di 30 minuti come ichiede la normativa vigente.

- la possibilità di aver un maggior numero di intervalli temporali ( immagine in basso) senza o con pochi rumori antropici 

- acquisendo il triplo di dati l'FFT ha la possibilità di ottenere un a maggiore risoluzione dei tre spettri hardware per poi ricavare il rapporto spettrale.

Nel test rimane ancora il discorso della precarietà dell'hardware non ancora montato su circuito stampato e con fili volanti.

Se visioniamo il grafico ottenuto sopra 1 hz vediamo le linee tratteggiate percentualmente più vicine alla linea continua 

Da tenere presente che per la prova non è stato usato un geofono 3D ma tre comuni geofoni 2 orizzontali e 1 verticale slegati tra di loro che  hanno prodotto qualche anomalia nelle alte frequenze anche per la presenza di traffico veicolare nell'area d'indagine.

Si fa presente che lo strumento non è stato fatto per fini professionali ma solo per studio, utile per studenti di geologia o di ingegneria che vogliono fare le prime sperimentazioni su metodologie HVSR per la determinazione della frequenza di risonanza dei fabbricati e ricerche stratigrafiche locali con un impegno finanziario minimo.
I geologi lo potranno provare per imparare le tecniche di acquisizione solo a scopo dimostrativo e di apprendimento della tecnica HVSR prima di decidere l'acquisto di uno strumento professionale. 

Per maggiori informazioni

geology sensors
progetto 1  - accelerometro per acquisizioni sismologiche


accelerometro per stazione sismica - il programma Hall free scaricabile gratuitamente dal sito www.theremino.it (menu download) permette solo di visualizzare il segnale acquisito, in preparazione un software specifico per la sismologia.

NEWS
 progetto 2 - un geofono usb Theremino 
prototipo per fare i primi test


Sono iniziati i test in campagna e in laboratorio

Geopsy video DEMO







manuale geopsy e altre applicazioni + video demo

Cliccare sulle immagini per far partire i video

This page is under construction, it will contain an index to all video tutorial available.

H/V computation for several stations, map of H/V peak frequencies:

Active source experiment for surface wave analysis

Simple inversion of a dispersion curve with dinver


domenica 10 novembre 2024

Ricerca accelerogrammi per indagini dinamiche non lineari.


Seismo - Home


Ricerca accelerogrammi - NTC08


Il software SEISM-HOME permette di ottenere l’input sismico da utilizzare per analisi dinamiche non lineari, per un qualsiasi sito del territorio italiano e per il periodo di ritorno di 475 anni. 

L’input sismico è definito in termini di un gruppo di sette accelerogrammi reali, registrati su roccia, spettro-compatibili in media agli spettri di normativa definiti nelle NTC08.

Tali accelerogrammi possono essere usati direttamente per analisi di sistemi strutturali o geotecnici posti su terreno roccioso, o come input per analisi di risposta sismica locale in caso di terreno non roccioso.






visitare anche:


vedere il manuale, entrati in




selezionare il punoto d'indagine  e richiedere con opportuna procedura l'invio tramite email dei terremoti di progetto.

giovedì 7 novembre 2024

Stazione sismica di San Martino Sulla Marrucina

 stazione sismica di
San Martino Sulla Marrucina






San Martino Sulla Marrucina



I
Stazione SMM01

Codice: SMM01 - Comune: San Martino Sulla Marrucina (CH)
Latitudine: 42,228386 - Longitudine: 14,214465
Sensori impiegati: Geofoni

Gestita da: GIANVITTORIO

Descrizione:

Link: https://sismosanmartino.altervista.org/

prende il nome da Leon




aggiornamento drum premere f5











lunedì 4 novembre 2024

QUANTUM GIS - OPEN SOURCE

http://qgis.org

Un ottimo gis gratuito con documentazione italiana

Quantum GIS (QGIS) è un progeamma Open Source Geographic Information System (GIS) facile da usare, autorizzato sotto la licenza GNU General Public License. QGIS è un progetto ufficiale della Open Source Geospatial Foundation (OSGeo). 

Si gira su Linux, Unix, Mac OSX, e Windows e supporta numerosi vettoriali, raster, ed i formati di database e funzionalità. 

Quantum GIS fornisce un numero in continua crescita di capacità fornite dagli funzioni fondamentali e plugin. 

È possibile visualizzare, gestire, modificare, analizzare i dati, comporre e stampare mappe. Avere una prima impressione con alcuni screenshot e un elenco più dettagliato funzione. 

Quantum GIS è un progetto volontario guidato. Accogliamo con favore i contributi in forma di codice contributi, correzioni di bug, le segnalazioni di bug, ha contribuito la documentazione, il patrocinio e il sostegno di altri utenti sulla nostra mailing list e il Forum QGIS. 

Se siete interessati a sostenere attivamente il progetto, è possibile trovare maggiori informazioni in virtù del menu e di sviluppo sul QGIS Wiki. Accogliamo inoltre con favore i contributi finanziari sotto forma di sponsor e finanziamenti

domenica 3 novembre 2024

SeismoSoft - SeismoSignal Screenshots





visitate il sito http://www.seismosoft.com ,
in paticolare la seguente pagina


richiesto da sismologi e ingegneri. SeismoSignal calcola :spettri di risposta elastica e anelastica costante duttilitàFourier e spettri di potenzaArias ( Ia) e caratteristica ( Ic ) intensitàCumulativo velocità assoluta ( CAV ) e la densità specifico di energia ( SED)Root-mean - square ( RMS ) di accelerazione, velocità e spostamentoAccelerazione massima sostenuta ( SMA ) e la velocità ( SMV ) Efficace disegno accelerazione ( EDA ) Accelerazione ( ASI ) e la velocità ( VSI ) intensità dello spettropredominante ( Tp ) e media ( Tm ) periodiHusid e trame flusso di energiaDurate parentesi , uniformi , significativo ed efficaceSeismoSignal consente inoltre il filtraggio del contenuto di frequenza indesiderate del segnale dato .

Tre diversi tipi di filtri digitali sono disponibili , ognuno dei quali in grado di effettuare passa-alto , passa-basso , passa-banda e filtraggio bandstop .

Il programma è in grado di leggere accelerogrammi definiti in entrambi i valori multipli singoli - e per i formati di linea ( i due formati più utilizzati da banche dati strong-motion ) , e in grado di applicare la correzione al basale e il filtraggio prima del tempo di integrazione del segnale ( ad ottenere velocità e spostamento tempo- history ) .Infine , e grazie alla sua completa integrazione con l'ambiente Windows , SeismoSignal consente di ottenere risultati numerici e grafici devono essere copiati in qualsiasi applicazione di Windows (ad esempio MS Excel , MS Word , ecc ) , facendo notare che le caratteristiche trame possono essere completamente personalizzati da dentro il programma stesso .